Functions of the novel RhoGAP proteins RGA-3 and RGA-4 in the germ line and in the early embryo of C. elegans.

نویسندگان

  • Cornelia Schmutz
  • Julia Stevens
  • Anne Spang
چکیده

We have identified two redundant GTPase activating proteins (GAPs) - RGA-3 and RGA-4 - that regulate Rho GTPase function at the plasma membrane in early Caenorhabditis elegans embryos. Knockdown of both RhoGAPs resulted in extensive membrane ruffling, furrowing and pronounced pseudo-cleavages. In addition, the non-muscle myosin NMY-2 and RHO-1 accumulated on the cortex at sites of ruffling. RGA-3 and RGA-4 are GAPs for RHO-1, but most probably not for CDC-42, because only RHO-1 was epistatic to the two GAPs, and the GAPs had no obvious influence on CDC-42 function. Furthermore, knockdown of either the RHO-1 effector, LET-502, or the exchange factor for RHO-1, ECT-2, alleviated the membrane-ruffling phenotype caused by simultaneous knockdown of both RGA-3 and RGA-4 [rga-3/4 (RNAi)]. GFP::PAR-6 and GFP::PAR-2 were localized at the anterior and posterior part of the early C. elegans embryo, respectively showing that rga-3/4 (RNAi) did not interfere with polarity establishment. Most importantly, upon simultaneous knockdown of RGA-3, RGA-4 and the third RhoGAP present in the early embryo, CYK-4, NMY-2 spread over the entire cortex and GFP::PAR-2 localization at the posterior cortex was greatly diminished. These results indicate that the functions of CYK-4 are temporally and spatially distinct from RGA-3 and RGA-4 (RGA-3/4). RGA-3/4 and CYK-4 also play different roles in controlling LET-502 activation in the germ line, because rga-3/4 (RNAi), but not cyk-4 (RNAi), aggravated the let-502(sb106) phenotype. We propose that RGA-3/4 and CYK-4 control with which effector molecules RHO-1 interacts at particular sites at the cortex in the zygote and in the germ line.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis.

Embryonic morphogenesis involves the coordinate behaviour of multiple cells and requires the accurate balance of forces acting within different cells through the application of appropriate brakes and throttles. In C. elegans, embryonic elongation is driven by Rho-binding kinase (ROCK) and actomyosin contraction in the epidermis. We identify an evolutionary conserved, actin microfilament-associa...

متن کامل

The Rho GTPase-activating proteins RGA-3 and RGA-4 are required to set the initial size of PAR domains in Caenorhabditis elegans one-cell embryos.

Caenorhabditis elegans embryos establish cortical domains of PAR proteins of reproducible size before asymmetric cell division. The ways in which the size of these domains is set remain unknown. Here we identify the GTPase-activating proteins (GAPs) RGA-3 and RGA-4, which regulate the activity of the small GTPase RHO-1. rga-3/4(RNAi) embryos have a hypercontractile cortex, and the initial relat...

متن کامل

A SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM

In practice, obtaining the global optimum for the economic dispatch {bf (ED)}problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new andefficient method for solving the economic dispatch problem with non-smooth cost functions using aFuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm  deals  with the issue ofcontrolling the ex...

متن کامل

Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo

Pulsed actomyosin contractility underlies diverse modes of tissue morphogenesis, but the mechanisms that generate pulsed contractions are still poorly understood. Here, we combine quantitative imaging with genetic perturbations and mathematical modeling to identify a core mechanism for pulsed contractility in early C. elegans embryos. We show that pulsed accumulation of actomyosin is governed a...

متن کامل

Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis.

The Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) protein negatively regulates the gibberellin (GA) signaling pathway. SPY is an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) with a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPR). OGTs add a GlcNAc monosaccharide to serine/threonine residues of nuclear and cytosolic proteins. Determination of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 134 19  شماره 

صفحات  -

تاریخ انتشار 2007